Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Europace ; 25(10)2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37815462

RESUMO

AIMS: Left bundle branch pacing (LBBP) can deliver physiological left ventricular activation, but typically at the cost of delayed right ventricular (RV) activation. Right ventricular activation can be advanced through anodal capture, but there is uncertainty regarding the mechanism by which this is achieved, and it is not known whether this produces haemodynamic benefit. METHODS AND RESULTS: We recruited patients with LBBP leads in whom anodal capture eliminated the terminal R-wave in lead V1. Ventricular activation pattern, timing, and high-precision acute haemodynamic response were studied during LBBP with and without anodal capture. We recruited 21 patients with a mean age of 67 years, of whom 14 were males. We measured electrocardiogram timings and haemodynamics in all patients, and in 16, we also performed non-invasive mapping. Ventricular epicardial propagation maps demonstrated that RV septal myocardial capture, rather than right bundle capture, was the mechanism for earlier RV activation. With anodal capture, QRS duration and total ventricular activation times were shorter (116 ± 12 vs. 129 ± 14 ms, P < 0.01 and 83 ± 18 vs. 90 ± 15 ms, P = 0.01). This required higher outputs (3.6 ± 1.9 vs. 0.6 ± 0.2 V, P < 0.01) but without additional haemodynamic benefit (mean difference -0.2 ± 3.8 mmHg compared with pacing without anodal capture, P = 0.2). CONCLUSION: Left bundle branch pacing with anodal capture advances RV activation by stimulating the RV septal myocardium. However, this requires higher outputs and does not improve acute haemodynamics. Aiming for anodal capture may therefore not be necessary.


Assuntos
Fascículo Atrioventricular , Estimulação Cardíaca Artificial , Masculino , Humanos , Idoso , Feminino , Estimulação Cardíaca Artificial/métodos , Sistema de Condução Cardíaco , Hemodinâmica , Ventrículos do Coração , Eletrocardiografia/métodos
2.
Pacing Clin Electrophysiol ; 45(4): 461-470, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34967945

RESUMO

BACKGROUND: Hemodynamically optimal atrioventricular (AV) delay can be derived by echocardiography or beat-by-beat blood pressure (BP) measurements, but analysis is labor intensive. Laser Doppler perfusion monitoring measures blood flow and can be incorporated into future implantable cardiac devices. We assess whether laser Doppler can be used instead of BP to optimize AV delay. METHODS: Fifty eight patients underwent 94 AV delay optimizations with biventricular or His-bundle pacing using laser Doppler and simultaneous noninvasive beat-by-beat BP. Optimal AV delay was defined using a curve of hemodynamic response to switching from AAI (reference state) to DDD (test state) at several AV delays (40-320 ms), with automatic quality control checking precision of the optimum. Five subsequent patients underwent an extended protocol to test the impact of greater numbers of alternations on optimization quality. RESULTS: 55/94 optimizations passed quality control resulting in an optimal AV delay on laser Doppler similar to that derived by BP (median absolute deviation 12 ms). An extended protocol with increasing number of replicates consistently improved quality and reduced disagreement between laser Doppler and BP optima. With only five replicates, no optimization passed quality control, and the median absolute deviation would be 29 ms. These improved progressively until at 50 replicates, all optimizations passed quality control and the median absolute deviation was only 13 ms. CONCLUSIONS: Laser Doppler perfusion produces hemodynamic optima equivalent to BP. Quality control can be automatic. Adding more replicates, consistently improves quality. Future implantable devices could use such methods to dynamically and reliably optimize AV delays.


Assuntos
Nó Atrioventricular , Marca-Passo Artificial , Biomarcadores , Estimulação Cardíaca Artificial/métodos , Ventrículos do Coração , Hemodinâmica , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...